Eccentricity of the hyperbola conjugate to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1$ is
$\frac{2}{{\sqrt 3 }}$
$2$
$\sqrt 3 $
$\frac{4}{3}$
The one which does not represent a hyperbola is
A square $ABCD$ has all its vertices on the curve $x ^{2} y ^{2}=1$. The midpoints of its sides also lie on the same curve. Then, the square of area of $ABCD$ is
If the straight line $x\cos \alpha + y\sin \alpha = p$ be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, then
A hyperbola passes through the point $P\left( {\sqrt 2 ,\sqrt 3 } \right)$ has foci at $\left( { \pm 2,0} \right)$. Then the tangent to this hyperbola at $P$ also passes through the point
Circles are drawn on chords of the rectangular hyperbola $ xy = c^2$ parallel to the line $ y = x $ as diameters. All such circles pass through two fixed points whose co-ordinates are :